Aerobic Bioprocess Control Using Artificial Intelligence Techniques
نویسندگان
چکیده
This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control. Keywords—Bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques.
منابع مشابه
Genetic programming assisted stochastic optimization strategies for optimization of glucose to gluconic acid fermentation.
This article presents two hybrid strategies for the modeling and optimization of the glucose to gluconic acid batch bioprocess. In the hybrid approaches, first a novel artificial intelligence formalism, namely, genetic programming (GP), is used to develop a process model solely from the historic process input-output data. In the next step, the input space of the GP-based model, representing pro...
متن کاملUse of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran
Determining the distribution of heavy metals in groundwater is important in developing appropriate management strategies at mine sites. In this paper, the application of artificial intelligence (AI) methods to data analysis,namely artificial neural network (ANN), hybrid ANN with biogeography-based optimization (ANN-BBO), and multi-output adaptive neural fuzzy inference system (MANFIS) to estima...
متن کاملNetwork Planning Using Iterative Improvement Methods and Heuristic Techniques
The problem of minimum-cost expansion of power transmission network is formulated as a genetic algorithm with the cost of new lines and security constraints and Kirchhoff’s Law at each bus bar included. A genetic algorithm (GA) is a search or optimization algorithm based on the mechanics of natural selection and genetics. An applied example is presented. The results from a set of tests carried ...
متن کاملGENERATION OF SYNTHETIC EARTHQUAKE RECORDS BY ARTIFICIAL INTELLIGENCE TECHNIQUES
For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil ty...
متن کاملAutomated Classification of Bioprocess Based on Optimum Compromise Whitening and Clustering
Biotech unit operations are often characterized by a large number of inputs (operating parameters) and outputs (performance parameters) along with complex correlations amongst them. A typical biotech process starts with the vial of the cell bank, ends with the final product, and has anywhere from 15 to 30 such unit operations in series. The aforementioned parameters can impact process performan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017